v2 working

This commit is contained in:
2025-12-08 20:25:20 +01:00
parent 4943a20c11
commit b84c43a898
20 changed files with 956 additions and 162 deletions

View File

@ -1,33 +1,27 @@
import cv2
import mediapipe as mp
import matplotlib
matplotlib.use("Agg") # <-- ważne: wyłącza GUI
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import pickle
import time
# ---------------------
# Wideo wejściowe
# ---------------------
import cv2
from ultralytics import YOLO
from calculate import normalize_pose
from utils import normalize
# Wczytanie wideo
cap = cv2.VideoCapture("input.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
width = 640
height = 640
# ---------------------
# Wideo wyjściowe
# ---------------------
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
width = 1920
height = 1080
# Ustawienia zapisu wideo
fourcc = cv2.VideoWriter_fourcc(*"avc1")
out = cv2.VideoWriter("output.mp4", fourcc, fps, (width, height))
# ---------------------
# MediaPipe Pose
# ---------------------
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(static_image_mode=False, model_complexity=1)
# Wczytanie modelu YOLOv8 Pose
model = YOLO("yolo11x-pose.pt", verbose=False) # Twój model pose
moves = []
started = False
frame_id = 0
while True:
@ -35,58 +29,32 @@ while True:
if not ok:
break
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = pose.process(rgb)
# Skalowanie do 640x640
frame_resized = cv2.resize(frame, (width, height))
# -----------------------------------------
# 3D landmarki: pose_world_landmarks
# -----------------------------------------
if results.pose_world_landmarks:
lm = results.pose_world_landmarks.landmark
# Wykrywanie poz
results = model.predict(frame_resized, verbose=False)
xs = np.array([p.x for p in lm])
ys = np.array([p.y for p in lm])
zs = np.array([p.z for p in lm])
# Rysowanie punktów 2D
for result in results:
if result.keypoints is not None and len(result.keypoints.xy) > 0:
for keypoint in result.keypoints.xy[0]: # keypoints[0] bo dla jednej osoby
if not started:
frame_id = 0
started = True
x, y = keypoint # współrzędne + confidence
x = int(x)
y = int(y)
cv2.circle(frame_resized, (x, y), 5, (0, 255, 0), -1) # zielone kropki
# -----------------------------
# RYSOWANIE 3D w Matplotlib
# -----------------------------
fig = plt.figure(figsize=(6.4, 6.4), dpi=100)
ax = fig.add_subplot(111, projection="3d")
ax.scatter(xs, zs, ys, s=20)
ax.set_xlim([-1, 1])
ax.set_ylim([-1, 1])
ax.set_zlim([-1, 1])
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
ax.invert_zaxis()
# -----------------------------------------
# Konwersja wykresu Matplotlib → klatka do MP4
# -----------------------------------------
fig.canvas.draw()
renderer = fig.canvas.get_renderer()
w, h = fig.canvas.get_width_height()
buf = renderer.buffer_rgba()
plot_img = np.frombuffer(buf, dtype=np.uint8).reshape((h, w, 4))[:, :, :3]
plt.close(fig)
# Dopasowanie rozmiaru do wideo
plot_img = cv2.resize(plot_img, (width, height))
plot_img = cv2.cvtColor(plot_img, cv2.COLOR_RGB2BGR)
out.write(plot_img)
moves.append((frame_id * 1 / fps, normalize_pose(result.keypoints.xy.cpu().numpy()[0]), normalize(result.keypoints.xy.cpu()[0]) * 160 + 250))
out.write(frame_resized)
frame_id += 1
with open('moves2.pkl', 'wb') as f: # 'wb' = write binary
pickle.dump(moves, f)
cap.release()
out.release()
print("Zapisano: output.mp4")