Compare commits

..

2 Commits

Author SHA1 Message Date
4943a20c11 working 2025-11-28 15:36:57 +00:00
40dc5b3b59 working 2025-11-28 08:31:35 +00:00
11 changed files with 238 additions and 55 deletions

1
.gitignore vendored
View File

@ -4,5 +4,6 @@
/.gpu-3d/
/.venv/
/venv/
*.mp4
yolo11*

3
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,3 @@
{
"liveServer.settings.port": 5501
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

36
mac.py Normal file
View File

@ -0,0 +1,36 @@
import cv2
import mediapipe as mp
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_pose = mp.solutions.pose
cap = cv2.VideoCapture(0)
with mp_pose.Pose(
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as pose:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
continue
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = pose.process(image)
# Draw the pose annotation on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
mp_drawing.draw_landmarks(
image,
results.pose_landmarks,
mp_pose.POSE_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style())
# Flip the image horizontally for a selfie-view display.
cv2.imshow('MediaPipe Pose', cv2.flip(image, 1))
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()

95
main.py
View File

@ -11,7 +11,7 @@ from draw import draw_new
from utils import find_closest
from video_methods import initialize_method
model = YOLO("yolo11x-pose.pt")
model = YOLO("yolo11s-pose.pt")
if len(sys.argv) == 2:
method_type = sys.argv[1]
@ -69,68 +69,71 @@ def main():
fps = 1 / delta if delta > 0 else float('inf')
# print(f"\rDelta: {delta:.4f}s, FPS: {fps:.2f}", end="")
for result in results:
kpts = result.keypoints.data[0] if len(result.keypoints.data) else None
if len(results) == 0:
continue
if kpts is None:
continue
result = results[0]
kpts = result.keypoints.data[0] if len(result.keypoints.data) else None
img = frame
if kpts is None:
continue
normalized = normalize_pose(result.keypoints.xy.cpu().numpy()[0])
img = frame
draw = utils.normalize(result.keypoints.xy.cpu().numpy()[0])
cv2.imshow('you', draw_new(draw * 100 + 100))
normalized = normalize_pose(result.keypoints.xy.cpu().numpy()[0])
if currTimeIndex != 0 and moves.index(find_closest(moves, time.time() - currTimeIndex)) == len(moves) - 1:
mehCount = totalCount - failCount - goodCount
draw = utils.normalize(result.keypoints.xy.cpu().numpy()[0])
cv2.imshow('you', draw_new(draw * 100 + 100))
print(
f"PODSUMOWANIE: FAIL {failCount} MEH: {mehCount} PERFECT: {goodCount} PERCENTAGE: {(goodCount + (0.95 * mehCount)) / totalCount * 100}%")
exit(1)
if currTimeIndex != 0 and moves.index(find_closest(moves, time.time() - currTimeIndex)) == len(moves) - 1:
mehCount = totalCount - failCount - goodCount
if currMove is None:
if compare_poses_boolean(moves[0][1], normalized):
currIndex = 1
currTimeIndex = time.time()
deltaTime = time.time()
currStatus = f"Zaczoles tanczyc {currIndex}"
currMove = moves[0]
print(
f"PODSUMOWANIE: FAIL {failCount} MEH: {mehCount} PERFECT: {goodCount} PERCENTAGE: {(goodCount + (0.95 * mehCount)) / totalCount * 100}%")
exit(1)
# thread = Thread(target=print_animation, args=(moves, False))
# thread.start()
else:
changed = False
if currMove is None:
if compare_poses_boolean(moves[0][1], normalized):
currIndex = 1
currTimeIndex = time.time()
deltaTime = time.time()
currStatus = f"Zaczoles tanczyc {currIndex}"
currMove = moves[0]
closest = find_closest(moves, time.time() - currTimeIndex)
cv2.imshow('Dots', draw_new(closest[2]))
# thread = Thread(target=print_animation, args=(moves, False))
# thread.start()
else:
changed = False
if abs((time.time() - currTimeIndex) - moves[currIndex][0]) > failRate:
currStatus = f"FAIL!"
failCount += 1
closest = find_closest(moves, time.time() - currTimeIndex)
cv2.imshow('Dots', draw_new(closest[2]))
if compare_poses_boolean(closest[1], normalized):
# delays += (time.time() - deltaTime - moves[0][0]) * 1000
# delaysCount += 1
if abs((time.time() - currTimeIndex) - moves[currIndex][0]) > failRate:
currStatus = f"FAIL!"
failCount += 1
currStatus = f"SUPER! {currIndex} Zostalo {len(moves)} Delay {(time.time() - currTimeIndex - closest[0]) / 1000}ms"
deltaTime = time.time()
if compare_poses_boolean(closest[1], normalized):
# delays += (time.time() - deltaTime - moves[0][0]) * 1000
# delaysCount += 1
currIndex = moves.index(closest) + 1
goodCount += 1
changed = True
currStatus = f"SUPER! {currIndex} Zostalo {len(moves)} Delay {(time.time() - currTimeIndex - closest[0]) / 1000}ms"
deltaTime = time.time()
if not changed and compare_poses_boolean(moves[currIndex][1], normalized):
# delays += (time.time() - deltaTime - moves[0][0]) * 1000
# delaysCount += 1
currIndex = moves.index(closest) + 1
goodCount += 1
changed = True
currStatus = f"SUPER! {currIndex} Zostalo {len(moves)} Delay {(time.time() - currTimeIndex - closest[0]) / 1000}ms"
deltaTime = time.time()
if not changed and compare_poses_boolean(moves[currIndex][1], normalized):
# delays += (time.time() - deltaTime - moves[0][0]) * 1000
# delaysCount += 1
changed = True
currStatus = f"SUPER! {currIndex} Zostalo {len(moves)} Delay {(time.time() - currTimeIndex - closest[0]) / 1000}ms"
deltaTime = time.time()
currIndex += 1
goodCount += 1
changed = True
currIndex += 1
goodCount += 1
# if do_pose_shot:
# moves.append((time.time() - startTime, normalize_pose(result.keypoints.xy.cpu().numpy()[0]), result.keypoints.xy.cpu()[0]))

43
moves_3d.py Normal file
View File

@ -0,0 +1,43 @@
import cv2
import mediapipe as mp
import cv2
import mediapipe as mp
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_pose = mp.solutions.pose
cap = cv2.VideoCapture(0)
with mp_pose.Pose(
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as pose:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = pose.process(image)
print(f"\r{results.pose_world_landmarks[0]}", end="")
# Draw the pose annotation on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
mp_drawing.draw_landmarks(
image,
results.pose_landmarks,
mp_pose.POSE_CONNECTIONS,
landmark_drawing_spec=mp_drawing_styles.get_default_pose_landmarks_style())
# Flip the image horizontally for a selfie-view display.
landmarks = results.pose_world_landmarks.landmark
print(landmark)
cap.release()

92
moves_3d_mp4.py Normal file
View File

@ -0,0 +1,92 @@
import cv2
import mediapipe as mp
import matplotlib
matplotlib.use("Agg") # <-- ważne: wyłącza GUI
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
# ---------------------
# Wideo wejściowe
# ---------------------
cap = cv2.VideoCapture("input.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
width = 640
height = 640
# ---------------------
# Wideo wyjściowe
# ---------------------
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
out = cv2.VideoWriter("output.mp4", fourcc, fps, (width, height))
# ---------------------
# MediaPipe Pose
# ---------------------
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(static_image_mode=False, model_complexity=1)
frame_id = 0
while True:
ok, frame = cap.read()
if not ok:
break
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = pose.process(rgb)
# -----------------------------------------
# 3D landmarki: pose_world_landmarks
# -----------------------------------------
if results.pose_world_landmarks:
lm = results.pose_world_landmarks.landmark
xs = np.array([p.x for p in lm])
ys = np.array([p.y for p in lm])
zs = np.array([p.z for p in lm])
# -----------------------------
# RYSOWANIE 3D w Matplotlib
# -----------------------------
fig = plt.figure(figsize=(6.4, 6.4), dpi=100)
ax = fig.add_subplot(111, projection="3d")
ax.scatter(xs, zs, ys, s=20)
ax.set_xlim([-1, 1])
ax.set_ylim([-1, 1])
ax.set_zlim([-1, 1])
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
ax.invert_zaxis()
# -----------------------------------------
# Konwersja wykresu Matplotlib → klatka do MP4
# -----------------------------------------
fig.canvas.draw()
renderer = fig.canvas.get_renderer()
w, h = fig.canvas.get_width_height()
buf = renderer.buffer_rgba()
plot_img = np.frombuffer(buf, dtype=np.uint8).reshape((h, w, 4))[:, :, :3]
plt.close(fig)
# Dopasowanie rozmiaru do wideo
plot_img = cv2.resize(plot_img, (width, height))
plot_img = cv2.cvtColor(plot_img, cv2.COLOR_RGB2BGR)
out.write(plot_img)
frame_id += 1
cap.release()
out.release()
print("Zapisano: output.mp4")

View File

@ -35,7 +35,7 @@ for i, move in enumerate(moves):
# Do rysowania (np. przesunięcie na ekran)
draw = utils.normalize(move[2])
draw = utils.normalize(move[2]) * 200 + 250
cv2.imshow('you', draw_new(draw))
cv2.waitKey(1)

View File

@ -15,21 +15,26 @@ def recvall(sock, n):
def distance(p1, p2):
return math.sqrt((p2[0] - p1[0])**2 + (p2[1] - p1[1])**2)
def normalize(move):
left_hip = move[11] # Left Hip
right_hip = move[12] # Right Hip
import numpy as np
def normalize(move):
left_hip = move[11] # Left Hip
right_hip = move[12] # Right Hip
nose = move[0] # Nose (głowa)
# Środek bioder
center = (left_hip + right_hip) / 2
# Przesunięcie względem środka
normalized_keypoints = move - center
distances = np.linalg.norm(normalized_keypoints[:, :2], axis=1)
max_dist = np.max(distances)
if max_dist > 0:
normalized_keypoints[:, :2] /= max_dist
# Zamiast max_dist używamy stałej miary "rozmiaru ciała"
body_height = np.linalg.norm(nose[:2] - center[:2]) # np. odległość biodra-głowa
if body_height > 0:
normalized_keypoints[:, :2] /= body_height
draw = normalized_keypoints[:, :2]
return draw
def find_closest(moves, target):