Files
JustTwirk/main.py
2025-08-25 19:37:48 +02:00

204 lines
5.8 KiB
Python

import pickle
import sys
import regex as re
import numpy as np
from ultralytics import YOLO
import cv2
import time
from calculate import normalize_pose, compare_poses_boolean
from draw import draw_new
model = YOLO("yolo11x-pose.pt")
if len(sys.argv) == 1:
method = sys.argv[1]
else:
print("Podaj argument 'cam', albo 'network'.")
exit(1)
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Nie można otworzyć kamerki")
exit(1)
last_time = time.time()
startTime = time.time()
stage = 0
pose = normalize_pose(np.array([[ 353.17, 107.28],
[ 363.3, 96.435],
[ 347.1, 98.647],
[ 390.12, 99.096],
[ 346.09, 103.63],
[ 425.77, 149.95],
[ 327.92, 153.12],
[ 495.16, 169.82],
[ 260.86, 166.3],
[ 565.53, 182.68],
[ 192.34, 170.58],
[ 393.83, 316.99],
[ 337.05, 316.41],
[ 388.36, 433.37],
[ 333.88, 431.89],
[ 383.58, 479.16],
[ 330.89, 480]]))
do_pose_shot = False
def click_event(event, x, y, flags, param):
global do_pose_shot
if event == cv2.EVENT_LBUTTONDOWN: # lewy przycisk myszy
do_pose_shot = not do_pose_shot
currTimeIndex = 0
currIndex = None
currMove = None
currStatus = "Zacznij tanczyc"
mehCount = 0
goodCount = 0
failCount = 0
failRate = 2
def wczytaj_dane_z_txt(sciezka):
wynik = []
with open(sciezka, "r") as f:
zawartosc = f.read()
# Znajdź wszystkie krotki w formacie (float, array([...]))
pattern = re.compile(r"\(([^,]+),\s*array\((\[.*?\]),\s*dtype=float32\)\)")
matches = pattern.findall(zawartosc)
for m in matches:
liczba = float(m[0])
tablica = np.array(eval(m[1]), dtype=np.float32)
wynik.append((liczba, tablica))
return wynik
moves = []
with open('moves.pkl', 'rb') as f: # 'rb' = read binary
moves = pickle.load(f)
startValue = moves[0][0]
totalCount = len(moves)
for i, move in enumerate(moves):
moves[i] = (move[0] - startValue, move[1], move[2])
def find_closest(target):
global moves
return min(moves, key=lambda t: abs(t[0] - target))
while True:
ret, frame = cap.read()
frame = cv2.flip(frame, 1)
results = model(frame, verbose=False)
current_time = time.time()
delta = current_time - last_time
last_time = current_time
fps = 1 / delta if delta > 0 else float('inf')
# print(f"\rDelta: {delta:.4f}s, FPS: {fps:.2f}", end="")
for result in results:
kpts = result.keypoints.data[0] if len(result.keypoints.data) else None
if kpts is None:
continue
img = frame
normalized = normalize_pose(result.keypoints.xy.cpu().numpy()[0])
cv2.imshow('you', draw_new(result.keypoints.xy.cpu()[0]))
if currTimeIndex != 0 and moves.index(find_closest(time.time() - currTimeIndex)) == len(moves) - 1:
mehCount = totalCount - failCount - goodCount
print(f"PODSUMOWANIE: FAIL {failCount} MEH: {mehCount} PERFECT: {goodCount} PERCENTAGE: {(goodCount + (0.95 * mehCount)) / totalCount * 100}%")
exit(1)
if currMove is None:
if compare_poses_boolean(moves[0][1], normalized):
currIndex = 1
currTimeIndex = time.time()
deltaTime = time.time()
currStatus = f"Zaczoles tanczyc {currIndex}"
currMove = moves[0]
# thread = Thread(target=print_animation, args=(moves, False))
# thread.start()
else:
changed = False
closest = find_closest(time.time() - currTimeIndex)
cv2.imshow('Dots', draw_new(closest[2]))
if abs((time.time() - currTimeIndex) - moves[currIndex][0]) > failRate:
currStatus = f"FAIL!"
failCount += 1
if compare_poses_boolean(closest[1], normalized):
# delays += (time.time() - deltaTime - moves[0][0]) * 1000
# delaysCount += 1
currStatus = f"SUPER! {currIndex} Zostalo {len(moves)} Delay {(time.time() - currTimeIndex - closest[0]) / 1000}ms"
deltaTime = time.time()
currIndex = moves.index(closest) + 1
goodCount += 1
changed = True
if not changed and compare_poses_boolean(moves[currIndex][1], normalized):
# delays += (time.time() - deltaTime - moves[0][0]) * 1000
# delaysCount += 1
currStatus = f"SUPER! {currIndex} Zostalo {len(moves)} Delay {(time.time() - currTimeIndex - closest[0]) / 1000}ms"
deltaTime = time.time()
changed = True
currIndex += 1
goodCount += 1
# if do_pose_shot:
# moves.append((time.time() - startTime, normalize_pose(result.keypoints.xy.cpu().numpy()[0]), result.keypoints.xy.cpu()[0]))
# elif len(moves) != 0:
# with open('moves.pkl', 'wb') as f: # 'wb' = write binary
# pickle.dump(moves, f)
#
# exit(1)
cv2.putText(
img, # obraz
currStatus, # tekst
(50, 100), # pozycja (x, y) lewego dolnego rogu tekstu
cv2.FONT_HERSHEY_SIMPLEX, # czcionka
1, # rozmiar (skalowanie)
(0, 0, 255), # kolor (BGR) - tutaj czerwony
2, # grubość linii
cv2.LINE_AA # typ antyaliasingu
)
cv2.imshow('Klatka z kamerki', img)
cv2.setMouseCallback('Klatka z kamerki', click_event)
cv2.waitKey(1) # Czekaj na naciśnięcie klawisza
# Access the results
for result in results:
annotated_frame = result.plot() # zwraca obraz z naniesionymi keypoints
# Wyświetlenie obrazu przy użyciu OpenCV
cv2.imshow("Pose", annotated_frame)
cv2.waitKey(0)
cv2.destroyAllWindows()