initial commit
This commit is contained in:
6
.gitignore
vendored
Normal file
6
.gitignore
vendored
Normal file
@ -0,0 +1,6 @@
|
||||
/mmdetection/
|
||||
/mmpose/
|
||||
/.ipynb_checkpoints/
|
||||
/.gpu/
|
||||
/.gpu-3d/
|
||||
/.venv/
|
||||
14
.idea/JustTwerk.iml
generated
Normal file
14
.idea/JustTwerk.iml
generated
Normal file
@ -0,0 +1,14 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$">
|
||||
<excludeFolder url="file://$MODULE_DIR$/.venv" />
|
||||
<excludeFolder url="file://$MODULE_DIR$/.venv1" />
|
||||
</content>
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
<component name="PyDocumentationSettings">
|
||||
<option name="format" value="GOOGLE" />
|
||||
<option name="myDocStringFormat" value="Google" />
|
||||
</component>
|
||||
</module>
|
||||
6
.idea/inspectionProfiles/profiles_settings.xml
generated
Normal file
6
.idea/inspectionProfiles/profiles_settings.xml
generated
Normal file
@ -0,0 +1,6 @@
|
||||
<component name="InspectionProjectProfileManager">
|
||||
<settings>
|
||||
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||
<version value="1.0" />
|
||||
</settings>
|
||||
</component>
|
||||
7
.idea/misc.xml
generated
Normal file
7
.idea/misc.xml
generated
Normal file
@ -0,0 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="Black">
|
||||
<option name="sdkName" value="Python 3.13 (JustTwerk)" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11 virtualenv at C:\Users\Kajetan\PycharmProjects\JustTwerk\.gpu-3d" project-jdk-type="Python SDK" />
|
||||
</project>
|
||||
8
.idea/vcs.xml
generated
Normal file
8
.idea/vcs.xml
generated
Normal file
@ -0,0 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
||||
<mapping directory="$PROJECT_DIR$/mmdetection" vcs="Git" />
|
||||
<mapping directory="$PROJECT_DIR$/mmpose" vcs="Git" />
|
||||
</component>
|
||||
</project>
|
||||
148
.idea/workspace.xml
generated
Normal file
148
.idea/workspace.xml
generated
Normal file
@ -0,0 +1,148 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="AutoImportSettings">
|
||||
<option name="autoReloadType" value="SELECTIVE" />
|
||||
</component>
|
||||
<component name="ChangeListManager">
|
||||
<list default="true" id="441a4e7b-d6ce-44cb-92c5-2f22f1b1874f" name="Changes" comment="initial commit">
|
||||
<change afterPath="$PROJECT_DIR$/.gitignore" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/.idea/JustTwerk.iml" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/.idea/inspectionProfiles/profiles_settings.xml" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/.idea/misc.xml" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/.idea/vcs.xml" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/02_whole_body_from_image.py" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/body3d.py" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/humanPoseDetection.ipynb" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/is_torch.py" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/rtmdet_m_8xb32-100e_coco-obj365-person-235e8209.pth" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/rtmpose-m_simcc-body7_pt-body7_420e-256x192-e48f03d0_20230504.pth" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/test.py" afterDir="false" />
|
||||
<change afterPath="$PROJECT_DIR$/videopose_h36m_243frames_fullconv_supervised_cpn_ft-88f5abbb_20210527.pth" afterDir="false" />
|
||||
<change beforePath="$PROJECT_DIR$/mmpose/demo/body3d_pose_lifter_demo.py" beforeDir="false" afterPath="$PROJECT_DIR$/mmpose/demo/body3d_pose_lifter_demo.py" afterDir="false" />
|
||||
</list>
|
||||
<option name="SHOW_DIALOG" value="false" />
|
||||
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
||||
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
||||
<option name="LAST_RESOLUTION" value="IGNORE" />
|
||||
</component>
|
||||
<component name="FileTemplateManagerImpl">
|
||||
<option name="RECENT_TEMPLATES">
|
||||
<list>
|
||||
<option value="Python Script" />
|
||||
</list>
|
||||
</option>
|
||||
</component>
|
||||
<component name="Git.Settings">
|
||||
<option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
|
||||
</component>
|
||||
<component name="ProjectColorInfo">{
|
||||
"associatedIndex": 6
|
||||
}</component>
|
||||
<component name="ProjectId" id="31eO8f3HjfPWWrp80QbmhTb8V2s" />
|
||||
<component name="ProjectViewState">
|
||||
<option name="hideEmptyMiddlePackages" value="true" />
|
||||
<option name="showLibraryContents" value="true" />
|
||||
</component>
|
||||
<component name="PropertiesComponent"><![CDATA[{
|
||||
"keyToString": {
|
||||
"ModuleVcsDetector.initialDetectionPerformed": "true",
|
||||
"Python.02_whole_body_from_image.executor": "Run",
|
||||
"Python.body3d.executor": "Run",
|
||||
"Python.body3d_pose_lifter_demo.executor": "Run",
|
||||
"Python.checkpoint.executor": "Run",
|
||||
"Python.is_torch.executor": "Run",
|
||||
"Python.local_visualizer_3d.executor": "Run",
|
||||
"Python.openpose.executor": "Run",
|
||||
"Python.test.executor": "Run",
|
||||
"RunOnceActivity.ShowReadmeOnStart": "true",
|
||||
"RunOnceActivity.TerminalTabsStorage.copyFrom.TerminalArrangementManager.252": "true",
|
||||
"RunOnceActivity.git.unshallow": "true",
|
||||
"git-widget-placeholder": "main",
|
||||
"last_opened_file_path": "C:/Users/Kajetan/PycharmProjects/JustTwerk",
|
||||
"node.js.detected.package.eslint": "true",
|
||||
"node.js.detected.package.tslint": "true",
|
||||
"node.js.selected.package.eslint": "(autodetect)",
|
||||
"node.js.selected.package.tslint": "(autodetect)",
|
||||
"nodejs_package_manager_path": "npm",
|
||||
"settings.editor.selected.configurable": "editor.preferences.fonts.default",
|
||||
"vue.rearranger.settings.migration": "true"
|
||||
}
|
||||
}]]></component>
|
||||
<component name="RecentsManager">
|
||||
<key name="CopyFile.RECENT_KEYS">
|
||||
<recent name="C:\Users\Kajetan\PycharmProjects\JustTwerk" />
|
||||
</key>
|
||||
</component>
|
||||
<component name="RunManager">
|
||||
<configuration name="test" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
||||
<module name="JustTwerk" />
|
||||
<option name="ENV_FILES" value="" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
<option name="PARENT_ENVS" value="true" />
|
||||
<envs>
|
||||
<env name="PYTHONUNBUFFERED" value="1" />
|
||||
</envs>
|
||||
<option name="SDK_HOME" value="" />
|
||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
||||
<option name="IS_MODULE_SDK" value="true" />
|
||||
<option name="ADD_CONTENT_ROOTS" value="true" />
|
||||
<option name="ADD_SOURCE_ROOTS" value="true" />
|
||||
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
||||
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/test.py" />
|
||||
<option name="PARAMETERS" value="" />
|
||||
<option name="SHOW_COMMAND_LINE" value="false" />
|
||||
<option name="EMULATE_TERMINAL" value="false" />
|
||||
<option name="MODULE_MODE" value="false" />
|
||||
<option name="REDIRECT_INPUT" value="false" />
|
||||
<option name="INPUT_FILE" value="" />
|
||||
<method v="2" />
|
||||
</configuration>
|
||||
<recent_temporary>
|
||||
<list>
|
||||
<item itemvalue="Python.test" />
|
||||
</list>
|
||||
</recent_temporary>
|
||||
</component>
|
||||
<component name="SharedIndexes">
|
||||
<attachedChunks>
|
||||
<set>
|
||||
<option value="bundled-js-predefined-d6986cc7102b-e03c56caf84a-JavaScript-PY-252.23892.515" />
|
||||
<option value="bundled-python-sdk-7e47963ff851-f0eec537fc84-com.jetbrains.pycharm.pro.sharedIndexes.bundled-PY-252.23892.515" />
|
||||
</set>
|
||||
</attachedChunks>
|
||||
</component>
|
||||
<component name="TaskManager">
|
||||
<task active="true" id="Default" summary="Default task">
|
||||
<changelist id="441a4e7b-d6ce-44cb-92c5-2f22f1b1874f" name="Changes" comment="" />
|
||||
<created>1755880914713</created>
|
||||
<option name="number" value="Default" />
|
||||
<option name="presentableId" value="Default" />
|
||||
<updated>1755880914713</updated>
|
||||
<workItem from="1755881007482" duration="1783000" />
|
||||
<workItem from="1755884695519" duration="705000" />
|
||||
<workItem from="1755885461444" duration="2686000" />
|
||||
<workItem from="1755888180570" duration="3107000" />
|
||||
<workItem from="1755891319108" duration="23374000" />
|
||||
</task>
|
||||
<servers />
|
||||
</component>
|
||||
<component name="TypeScriptGeneratedFilesManager">
|
||||
<option name="version" value="3" />
|
||||
</component>
|
||||
<component name="VcsManagerConfiguration">
|
||||
<MESSAGE value="initial commit" />
|
||||
<option name="LAST_COMMIT_MESSAGE" value="initial commit" />
|
||||
</component>
|
||||
<component name="com.intellij.coverage.CoverageDataManagerImpl">
|
||||
<SUITE FILE_PATH="coverage/JustTwerk$openpose.coverage" NAME="openpose Coverage Results" MODIFIED="1755886110615" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="false" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/human-pose-estimation-opencv" />
|
||||
<SUITE FILE_PATH="coverage/JustTwerk$body3d_pose_lifter_demo.coverage" NAME="body3d_pose_lifter_demo Coverage Results" MODIFIED="1755937235510" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="false" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/mmpose/demo" />
|
||||
<SUITE FILE_PATH="coverage/JustTwerk$body3d.coverage" NAME="body3d Coverage Results" MODIFIED="1755944498141" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="false" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
||||
<SUITE FILE_PATH="coverage/JustTwerk$02_whole_body_from_image.coverage" NAME="02_whole_body_from_image Coverage Results" MODIFIED="1755885569302" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="false" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
||||
<SUITE FILE_PATH="coverage/JustTwerk$local_visualizer_3d.coverage" NAME="local_visualizer_3d Coverage Results" MODIFIED="1755937454029" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="false" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/.gpu/Lib/site-packages/mmpose/visualization" />
|
||||
<SUITE FILE_PATH="coverage/JustTwerk$checkpoint.coverage" NAME="checkpoint Coverage Results" MODIFIED="1755936916130" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="false" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/.gpu/Lib/site-packages/mmengine/runner" />
|
||||
<SUITE FILE_PATH="coverage/JustTwerk$is_torch.coverage" NAME="is_torch Coverage Results" MODIFIED="1755943611769" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="false" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
||||
<SUITE FILE_PATH="coverage/JustTwerk$test.coverage" NAME="test Coverage Results" MODIFIED="1755962675907" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="false" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
||||
</component>
|
||||
</project>
|
||||
70
02_whole_body_from_image.py
Normal file
70
02_whole_body_from_image.py
Normal file
@ -0,0 +1,70 @@
|
||||
# From Python
|
||||
# It requires OpenCV installed for Python
|
||||
import sys
|
||||
import cv2
|
||||
import os
|
||||
from sys import platform
|
||||
import argparse
|
||||
|
||||
try:
|
||||
# Import Openpose (Windows/Ubuntu/OSX)
|
||||
dir_path = r"C:\Users\Kajetan\Documents\openpose/python"
|
||||
try:
|
||||
# Change these variables to point to the correct folder (Release/x64 etc.)
|
||||
sys.path.append(dir_path + '/../bin/python/openpose/Release');
|
||||
os.environ['PATH'] = os.environ['PATH'] + ';' + dir_path + '/../x64/Release;' + dir_path + '/../bin;'
|
||||
|
||||
print(os.environ["PATH"])
|
||||
import pyopenpose as op
|
||||
except ImportError as e:
|
||||
print('Error: OpenPose library could not be found. Did you enable `BUILD_PYTHON` in CMake and have this Python script in the right folder?')
|
||||
raise e
|
||||
|
||||
# Flags
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--image_path", default="../examples/media/COCO_val2014_000000000241.jpg", help="Process an image. Read all standard formats (jpg, png, bmp, etc.).")
|
||||
args = parser.parse_known_args()
|
||||
|
||||
# Custom Params (refer to include/openpose/flags.hpp for more parameters)
|
||||
params = dict()
|
||||
params["model_folder"] = "../models/"
|
||||
params["face"] = True
|
||||
params["hand"] = True
|
||||
|
||||
# Add others in path?
|
||||
for i in range(0, len(args[1])):
|
||||
curr_item = args[1][i]
|
||||
if i != len(args[1])-1: next_item = args[1][i+1]
|
||||
else: next_item = "1"
|
||||
if "--" in curr_item and "--" in next_item:
|
||||
key = curr_item.replace('-','')
|
||||
if key not in params: params[key] = "1"
|
||||
elif "--" in curr_item and "--" not in next_item:
|
||||
key = curr_item.replace('-','')
|
||||
if key not in params: params[key] = next_item
|
||||
|
||||
# Construct it from system arguments
|
||||
# op.init_argv(args[1])
|
||||
# oppython = op.OpenposePython()
|
||||
|
||||
# Starting OpenPose
|
||||
opWrapper = op.WrapperPython()
|
||||
opWrapper.configure(params)
|
||||
opWrapper.start()
|
||||
|
||||
# Process Image
|
||||
datum = op.Datum()
|
||||
imageToProcess = cv2.imread(args[0].image_path)
|
||||
datum.cvInputData = imageToProcess
|
||||
opWrapper.emplaceAndPop(op.VectorDatum([datum]))
|
||||
|
||||
# Display Image
|
||||
print("Body keypoints: \n" + str(datum.poseKeypoints))
|
||||
print("Face keypoints: \n" + str(datum.faceKeypoints))
|
||||
print("Left hand keypoints: \n" + str(datum.handKeypoints[0]))
|
||||
print("Right hand keypoints: \n" + str(datum.handKeypoints[1]))
|
||||
cv2.imshow("OpenPose 1.7.0 - Tutorial Python API", datum.cvOutputData)
|
||||
cv2.waitKey(0)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
sys.exit(-1)
|
||||
555
body3d.py
Normal file
555
body3d.py
Normal file
@ -0,0 +1,555 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import logging
|
||||
import mimetypes
|
||||
import os
|
||||
import time
|
||||
from argparse import ArgumentParser
|
||||
from functools import partial
|
||||
|
||||
import cv2
|
||||
import json_tricks as json
|
||||
import mmcv
|
||||
import mmengine
|
||||
import numpy as np
|
||||
from mmengine.logging import print_log
|
||||
|
||||
from mmpose.apis import (_track_by_iou, _track_by_oks,
|
||||
convert_keypoint_definition, extract_pose_sequence,
|
||||
inference_pose_lifter_model, inference_topdown,
|
||||
init_model)
|
||||
from mmpose.models.pose_estimators import PoseLifter
|
||||
from mmpose.models.pose_estimators.topdown import TopdownPoseEstimator
|
||||
from mmpose.registry import VISUALIZERS
|
||||
from mmpose.structures import (PoseDataSample, merge_data_samples,
|
||||
split_instances)
|
||||
from mmpose.utils import adapt_mmdet_pipeline
|
||||
|
||||
try:
|
||||
from mmdet.apis import inference_detector, init_detector
|
||||
has_mmdet = True
|
||||
except (ImportError, ModuleNotFoundError):
|
||||
has_mmdet = False
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument('--det_config', default="mmpose/demo/mmdetection_cfg/rtmdet_m_640-8xb32_coco-person.py", help='Config file for detection')
|
||||
parser.add_argument('--det_checkpoint', default="rtmdet_m_8xb32-100e_coco-obj365-person-235e8209.pth", help='Checkpoint file for detection')
|
||||
parser.add_argument(
|
||||
'--pose_estimator_config',
|
||||
type=str,
|
||||
default="mmpose/configs/body_2d_keypoint/rtmpose/body8/rtmpose-m_8xb256-420e_body8-256x192.py",
|
||||
help='Config file for the 1st stage 2D pose estimator')
|
||||
parser.add_argument(
|
||||
'--pose_estimator_checkpoint',
|
||||
type=str,
|
||||
default="rtmpose-m_simcc-body7_pt-body7_420e-256x192-e48f03d0_20230504.pth",
|
||||
help='Checkpoint file for the 1st stage 2D pose estimator')
|
||||
parser.add_argument(
|
||||
'--pose_lifter_config',
|
||||
default="mmpose/configs/body_3d_keypoint/video_pose_lift/h36m/video-pose-lift_tcn-243frm-supv-cpn-ft_8xb128-200e_h36m.py",
|
||||
help='Config file for the 2nd stage pose lifter model')
|
||||
parser.add_argument(
|
||||
'--pose_lifter_checkpoint',
|
||||
default="videopose_h36m_243frames_fullconv_supervised_cpn_ft-88f5abbb_20210527.pth",
|
||||
help='Checkpoint file for the 2nd stage pose lifter model')
|
||||
parser.add_argument('--input', type=str, default='webcam', help='Video path')
|
||||
parser.add_argument(
|
||||
'--show',
|
||||
action='store_true',
|
||||
default=True,
|
||||
help='Whether to show visualizations')
|
||||
parser.add_argument(
|
||||
'--disable-rebase-keypoint',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Whether to disable rebasing the predicted 3D pose so its '
|
||||
'lowest keypoint has a height of 0 (landing on the ground). Rebase '
|
||||
'is useful for visualization when the model do not predict the '
|
||||
'global position of the 3D pose.')
|
||||
parser.add_argument(
|
||||
'--disable-norm-pose-2d',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Whether to scale the bbox (along with the 2D pose) to the '
|
||||
'average bbox scale of the dataset, and move the bbox (along with the '
|
||||
'2D pose) to the average bbox center of the dataset. This is useful '
|
||||
'when bbox is small, especially in multi-person scenarios.')
|
||||
parser.add_argument(
|
||||
'--num-instances',
|
||||
type=int,
|
||||
default=1,
|
||||
help='The number of 3D poses to be visualized in every frame. If '
|
||||
'less than 0, it will be set to the number of pose results in the '
|
||||
'first frame.')
|
||||
parser.add_argument(
|
||||
'--output-root',
|
||||
type=str,
|
||||
default='',
|
||||
help='Root of the output video file. '
|
||||
'Default not saving the visualization video.')
|
||||
parser.add_argument(
|
||||
'--save-predictions',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Whether to save predicted results')
|
||||
parser.add_argument(
|
||||
'--device', default='cuda:0', help='Device used for inference')
|
||||
parser.add_argument(
|
||||
'--det-cat-id',
|
||||
type=int,
|
||||
default=0,
|
||||
help='Category id for bounding box detection model')
|
||||
parser.add_argument(
|
||||
'--bbox-thr',
|
||||
type=float,
|
||||
default=0.3,
|
||||
help='Bounding box score threshold')
|
||||
parser.add_argument('--kpt-thr', type=float, default=0.3)
|
||||
parser.add_argument(
|
||||
'--use-oks-tracking', action='store_true', help='Using OKS tracking')
|
||||
parser.add_argument(
|
||||
'--tracking-thr', type=float, default=0.3, help='Tracking threshold')
|
||||
parser.add_argument(
|
||||
'--show-interval', type=int, default=0, help='Sleep seconds per frame')
|
||||
parser.add_argument(
|
||||
'--thickness',
|
||||
type=int,
|
||||
default=1,
|
||||
help='Link thickness for visualization')
|
||||
parser.add_argument(
|
||||
'--radius',
|
||||
type=int,
|
||||
default=3,
|
||||
help='Keypoint radius for visualization')
|
||||
parser.add_argument(
|
||||
'--online',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Inference mode. If set to True, can not use future frame'
|
||||
'information when using multi frames for inference in the 2D pose'
|
||||
'detection stage. Default: False.')
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def process_one_image(args, detector, frame, frame_idx, pose_estimator,
|
||||
pose_est_results_last, pose_est_results_list, next_id,
|
||||
pose_lifter, visualize_frame, visualizer):
|
||||
"""Visualize detected and predicted keypoints of one image.
|
||||
|
||||
Pipeline of this function:
|
||||
|
||||
frame
|
||||
|
|
||||
V
|
||||
+-----------------+
|
||||
| detector |
|
||||
+-----------------+
|
||||
| det_result
|
||||
V
|
||||
+-----------------+
|
||||
| pose_estimator |
|
||||
+-----------------+
|
||||
| pose_est_results
|
||||
V
|
||||
+--------------------------------------------+
|
||||
| convert 2d kpts into pose-lifting format |
|
||||
+--------------------------------------------+
|
||||
| pose_est_results_list
|
||||
V
|
||||
+-----------------------+
|
||||
| extract_pose_sequence |
|
||||
+-----------------------+
|
||||
| pose_seq_2d
|
||||
V
|
||||
+-------------+
|
||||
| pose_lifter |
|
||||
+-------------+
|
||||
| pose_lift_results
|
||||
V
|
||||
+-----------------+
|
||||
| post-processing |
|
||||
+-----------------+
|
||||
| pred_3d_data_samples
|
||||
V
|
||||
+------------+
|
||||
| visualizer |
|
||||
+------------+
|
||||
|
||||
Args:
|
||||
args (Argument): Custom command-line arguments.
|
||||
detector (mmdet.BaseDetector): The mmdet detector.
|
||||
frame (np.ndarray): The image frame read from input image or video.
|
||||
frame_idx (int): The index of current frame.
|
||||
pose_estimator (TopdownPoseEstimator): The pose estimator for 2d pose.
|
||||
pose_est_results_last (list(PoseDataSample)): The results of pose
|
||||
estimation from the last frame for tracking instances.
|
||||
pose_est_results_list (list(list(PoseDataSample))): The list of all
|
||||
pose estimation results converted by
|
||||
``convert_keypoint_definition`` from previous frames. In
|
||||
pose-lifting stage it is used to obtain the 2d estimation sequence.
|
||||
next_id (int): The next track id to be used.
|
||||
pose_lifter (PoseLifter): The pose-lifter for estimating 3d pose.
|
||||
visualize_frame (np.ndarray): The image for drawing the results on.
|
||||
visualizer (Visualizer): The visualizer for visualizing the 2d and 3d
|
||||
pose estimation results.
|
||||
|
||||
Returns:
|
||||
pose_est_results (list(PoseDataSample)): The pose estimation result of
|
||||
the current frame.
|
||||
pose_est_results_list (list(list(PoseDataSample))): The list of all
|
||||
converted pose estimation results until the current frame.
|
||||
pred_3d_instances (InstanceData): The result of pose-lifting.
|
||||
Specifically, the predicted keypoints and scores are saved at
|
||||
``pred_3d_instances.keypoints`` and
|
||||
``pred_3d_instances.keypoint_scores``.
|
||||
next_id (int): The next track id to be used.
|
||||
"""
|
||||
pose_lift_dataset = pose_lifter.cfg.test_dataloader.dataset
|
||||
pose_lift_dataset_name = pose_lifter.dataset_meta['dataset_name']
|
||||
|
||||
# First stage: conduct 2D pose detection in a Topdown manner
|
||||
# use detector to obtain person bounding boxes
|
||||
det_result = inference_detector(detector, frame)
|
||||
pred_instance = det_result.pred_instances.cpu().numpy()
|
||||
|
||||
# filter out the person instances with category and bbox threshold
|
||||
# e.g. 0 for person in COCO
|
||||
bboxes = pred_instance.bboxes
|
||||
bboxes = bboxes[np.logical_and(pred_instance.labels == args.det_cat_id,
|
||||
pred_instance.scores > args.bbox_thr)]
|
||||
|
||||
# estimate pose results for current image
|
||||
pose_est_results = inference_topdown(pose_estimator, frame, bboxes)
|
||||
|
||||
if args.use_oks_tracking:
|
||||
_track = partial(_track_by_oks)
|
||||
else:
|
||||
_track = _track_by_iou
|
||||
|
||||
pose_det_dataset_name = pose_estimator.dataset_meta['dataset_name']
|
||||
pose_est_results_converted = []
|
||||
|
||||
# convert 2d pose estimation results into the format for pose-lifting
|
||||
# such as changing the keypoint order, flipping the keypoint, etc.
|
||||
for i, data_sample in enumerate(pose_est_results):
|
||||
pred_instances = data_sample.pred_instances.cpu().numpy()
|
||||
keypoints = pred_instances.keypoints
|
||||
# calculate area and bbox
|
||||
if 'bboxes' in pred_instances:
|
||||
areas = np.array([(bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
|
||||
for bbox in pred_instances.bboxes])
|
||||
pose_est_results[i].pred_instances.set_field(areas, 'areas')
|
||||
else:
|
||||
areas, bboxes = [], []
|
||||
for keypoint in keypoints:
|
||||
xmin = np.min(keypoint[:, 0][keypoint[:, 0] > 0], initial=1e10)
|
||||
xmax = np.max(keypoint[:, 0])
|
||||
ymin = np.min(keypoint[:, 1][keypoint[:, 1] > 0], initial=1e10)
|
||||
ymax = np.max(keypoint[:, 1])
|
||||
areas.append((xmax - xmin) * (ymax - ymin))
|
||||
bboxes.append([xmin, ymin, xmax, ymax])
|
||||
pose_est_results[i].pred_instances.areas = np.array(areas)
|
||||
pose_est_results[i].pred_instances.bboxes = np.array(bboxes)
|
||||
|
||||
# track id
|
||||
track_id, pose_est_results_last, _ = _track(data_sample,
|
||||
pose_est_results_last,
|
||||
args.tracking_thr)
|
||||
if track_id == -1:
|
||||
if np.count_nonzero(keypoints[:, :, 1]) >= 3:
|
||||
track_id = next_id
|
||||
next_id += 1
|
||||
else:
|
||||
# If the number of keypoints detected is small,
|
||||
# delete that person instance.
|
||||
keypoints[:, :, 1] = -10
|
||||
pose_est_results[i].pred_instances.set_field(
|
||||
keypoints, 'keypoints')
|
||||
pose_est_results[i].pred_instances.set_field(
|
||||
pred_instances.bboxes * 0, 'bboxes')
|
||||
pose_est_results[i].set_field(pred_instances, 'pred_instances')
|
||||
track_id = -1
|
||||
pose_est_results[i].set_field(track_id, 'track_id')
|
||||
|
||||
# convert keypoints for pose-lifting
|
||||
pose_est_result_converted = PoseDataSample()
|
||||
pose_est_result_converted.set_field(
|
||||
pose_est_results[i].pred_instances.clone(), 'pred_instances')
|
||||
pose_est_result_converted.set_field(
|
||||
pose_est_results[i].gt_instances.clone(), 'gt_instances')
|
||||
keypoints = convert_keypoint_definition(keypoints,
|
||||
pose_det_dataset_name,
|
||||
pose_lift_dataset_name)
|
||||
pose_est_result_converted.pred_instances.set_field(
|
||||
keypoints, 'keypoints')
|
||||
pose_est_result_converted.set_field(pose_est_results[i].track_id,
|
||||
'track_id')
|
||||
pose_est_results_converted.append(pose_est_result_converted)
|
||||
|
||||
pose_est_results_list.append(pose_est_results_converted.copy())
|
||||
|
||||
# Second stage: Pose lifting
|
||||
# extract and pad input pose2d sequence
|
||||
pose_seq_2d = extract_pose_sequence(
|
||||
pose_est_results_list,
|
||||
frame_idx=frame_idx,
|
||||
causal=pose_lift_dataset.get('causal', False),
|
||||
seq_len=pose_lift_dataset.get('seq_len', 1),
|
||||
step=pose_lift_dataset.get('seq_step', 1))
|
||||
|
||||
# conduct 2D-to-3D pose lifting
|
||||
norm_pose_2d = not args.disable_norm_pose_2d
|
||||
pose_lift_results = inference_pose_lifter_model(
|
||||
pose_lifter,
|
||||
pose_seq_2d,
|
||||
image_size=visualize_frame.shape[:2],
|
||||
norm_pose_2d=norm_pose_2d)
|
||||
|
||||
# post-processing
|
||||
for idx, pose_lift_result in enumerate(pose_lift_results):
|
||||
pose_lift_result.track_id = pose_est_results[idx].get('track_id', 1e4)
|
||||
|
||||
pred_instances = pose_lift_result.pred_instances
|
||||
keypoints = pred_instances.keypoints
|
||||
keypoint_scores = pred_instances.keypoint_scores
|
||||
if keypoint_scores.ndim == 3:
|
||||
keypoint_scores = np.squeeze(keypoint_scores, axis=1)
|
||||
pose_lift_results[
|
||||
idx].pred_instances.keypoint_scores = keypoint_scores
|
||||
if keypoints.ndim == 4:
|
||||
keypoints = np.squeeze(keypoints, axis=1)
|
||||
|
||||
keypoints = keypoints[..., [0, 2, 1]]
|
||||
keypoints[..., 0] = -keypoints[..., 0]
|
||||
keypoints[..., 2] = -keypoints[..., 2]
|
||||
|
||||
# rebase height (z-axis)
|
||||
if not args.disable_rebase_keypoint:
|
||||
keypoints[..., 2] -= np.min(
|
||||
keypoints[..., 2], axis=-1, keepdims=True)
|
||||
|
||||
pose_lift_results[idx].pred_instances.keypoints = keypoints
|
||||
|
||||
pose_lift_results = sorted(
|
||||
pose_lift_results, key=lambda x: x.get('track_id', 1e4))
|
||||
|
||||
pred_3d_data_samples = merge_data_samples(pose_lift_results)
|
||||
det_data_sample = merge_data_samples(pose_est_results)
|
||||
pred_3d_instances = pred_3d_data_samples.get('pred_instances', None)
|
||||
|
||||
if args.num_instances < 0:
|
||||
args.num_instances = len(pose_lift_results)
|
||||
|
||||
# Visualization
|
||||
if visualizer is not None:
|
||||
visualizer.add_datasample(
|
||||
'result',
|
||||
visualize_frame,
|
||||
data_sample=pred_3d_data_samples,
|
||||
det_data_sample=det_data_sample,
|
||||
draw_gt=False,
|
||||
dataset_2d=pose_det_dataset_name,
|
||||
dataset_3d=pose_lift_dataset_name,
|
||||
show=args.show,
|
||||
draw_bbox=True,
|
||||
kpt_thr=args.kpt_thr,
|
||||
num_instances=args.num_instances,
|
||||
wait_time=args.show_interval)
|
||||
|
||||
return pose_est_results, pose_est_results_list, pred_3d_instances, next_id
|
||||
|
||||
|
||||
def main():
|
||||
assert has_mmdet, 'Please install mmdet to run the demo.'
|
||||
|
||||
args = parse_args()
|
||||
|
||||
assert args.show or (args.output_root != '')
|
||||
assert args.input != ''
|
||||
assert args.det_config is not None
|
||||
assert args.det_checkpoint is not None
|
||||
|
||||
detector = init_detector(
|
||||
args.det_config, args.det_checkpoint, device=args.device.lower())
|
||||
detector.cfg = adapt_mmdet_pipeline(detector.cfg)
|
||||
|
||||
pose_estimator = init_model(
|
||||
args.pose_estimator_config,
|
||||
args.pose_estimator_checkpoint,
|
||||
device=args.device.lower())
|
||||
|
||||
assert isinstance(pose_estimator, TopdownPoseEstimator), 'Only "TopDown"' \
|
||||
'model is supported for the 1st stage (2D pose detection)'
|
||||
|
||||
det_kpt_color = pose_estimator.dataset_meta.get('keypoint_colors', None)
|
||||
det_dataset_skeleton = pose_estimator.dataset_meta.get(
|
||||
'skeleton_links', None)
|
||||
det_dataset_link_color = pose_estimator.dataset_meta.get(
|
||||
'skeleton_link_colors', None)
|
||||
|
||||
pose_lifter = init_model(
|
||||
args.pose_lifter_config,
|
||||
args.pose_lifter_checkpoint,
|
||||
device=args.device.lower())
|
||||
|
||||
assert isinstance(pose_lifter, PoseLifter), \
|
||||
'Only "PoseLifter" model is supported for the 2nd stage ' \
|
||||
'(2D-to-3D lifting)'
|
||||
|
||||
pose_lifter.cfg.visualizer.radius = args.radius
|
||||
pose_lifter.cfg.visualizer.line_width = args.thickness
|
||||
pose_lifter.cfg.visualizer.det_kpt_color = det_kpt_color
|
||||
pose_lifter.cfg.visualizer.det_dataset_skeleton = det_dataset_skeleton
|
||||
pose_lifter.cfg.visualizer.det_dataset_link_color = det_dataset_link_color
|
||||
visualizer = VISUALIZERS.build(pose_lifter.cfg.visualizer)
|
||||
|
||||
# the dataset_meta is loaded from the checkpoint
|
||||
visualizer.set_dataset_meta(pose_lifter.dataset_meta)
|
||||
|
||||
if args.input == 'webcam':
|
||||
input_type = 'webcam'
|
||||
else:
|
||||
input_type = mimetypes.guess_type(args.input)[0].split('/')[0]
|
||||
|
||||
if args.output_root == '':
|
||||
save_output = False
|
||||
else:
|
||||
mmengine.mkdir_or_exist(args.output_root)
|
||||
output_file = os.path.join(args.output_root,
|
||||
os.path.basename(args.input))
|
||||
if args.input == 'webcam':
|
||||
output_file += '.mp4'
|
||||
save_output = True
|
||||
|
||||
if args.save_predictions:
|
||||
assert args.output_root != ''
|
||||
args.pred_save_path = f'{args.output_root}/results_' \
|
||||
f'{os.path.splitext(os.path.basename(args.input))[0]}.json'
|
||||
|
||||
if save_output:
|
||||
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
||||
|
||||
pose_est_results_list = []
|
||||
pred_instances_list = []
|
||||
if input_type == 'image':
|
||||
frame = mmcv.imread(args.input, channel_order='rgb')
|
||||
_, _, pred_3d_instances, _ = process_one_image(
|
||||
args=args,
|
||||
detector=detector,
|
||||
frame=frame,
|
||||
frame_idx=0,
|
||||
pose_estimator=pose_estimator,
|
||||
pose_est_results_last=[],
|
||||
pose_est_results_list=pose_est_results_list,
|
||||
next_id=0,
|
||||
pose_lifter=pose_lifter,
|
||||
visualize_frame=frame,
|
||||
visualizer=visualizer)
|
||||
|
||||
if args.save_predictions:
|
||||
# save prediction results
|
||||
pred_instances_list = split_instances(pred_3d_instances)
|
||||
|
||||
if save_output:
|
||||
frame_vis = visualizer.get_image()
|
||||
mmcv.imwrite(mmcv.rgb2bgr(frame_vis), output_file)
|
||||
|
||||
elif input_type in ['webcam', 'video']:
|
||||
next_id = 0
|
||||
pose_est_results = []
|
||||
|
||||
if args.input == 'webcam':
|
||||
video = cv2.VideoCapture(0)
|
||||
else:
|
||||
video = cv2.VideoCapture(args.input)
|
||||
|
||||
(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
|
||||
if int(major_ver) < 3:
|
||||
fps = video.get(cv2.cv.CV_CAP_PROP_FPS)
|
||||
else:
|
||||
fps = video.get(cv2.CAP_PROP_FPS)
|
||||
|
||||
video_writer = None
|
||||
frame_idx = 0
|
||||
|
||||
while video.isOpened():
|
||||
success, frame = video.read()
|
||||
frame_idx += 1
|
||||
|
||||
if not success:
|
||||
break
|
||||
|
||||
pose_est_results_last = pose_est_results
|
||||
|
||||
# First stage: 2D pose detection
|
||||
# make person results for current image
|
||||
(pose_est_results, pose_est_results_list, pred_3d_instances,
|
||||
next_id) = process_one_image(
|
||||
args=args,
|
||||
detector=detector,
|
||||
frame=frame,
|
||||
frame_idx=frame_idx,
|
||||
pose_estimator=pose_estimator,
|
||||
pose_est_results_last=pose_est_results_last,
|
||||
pose_est_results_list=pose_est_results_list,
|
||||
next_id=next_id,
|
||||
pose_lifter=pose_lifter,
|
||||
visualize_frame=mmcv.bgr2rgb(frame),
|
||||
visualizer=visualizer)
|
||||
|
||||
if args.save_predictions:
|
||||
# save prediction results
|
||||
pred_instances_list.append(
|
||||
dict(
|
||||
frame_id=frame_idx,
|
||||
instances=split_instances(pred_3d_instances)))
|
||||
|
||||
if save_output:
|
||||
frame_vis = visualizer.get_image()
|
||||
if video_writer is None:
|
||||
# the size of the image with visualization may vary
|
||||
# depending on the presence of heatmaps
|
||||
video_writer = cv2.VideoWriter(output_file, fourcc, fps,
|
||||
(frame_vis.shape[1],
|
||||
frame_vis.shape[0]))
|
||||
|
||||
video_writer.write(mmcv.rgb2bgr(frame_vis))
|
||||
|
||||
if args.show:
|
||||
# press ESC to exit
|
||||
if cv2.waitKey(5) & 0xFF == 27:
|
||||
break
|
||||
time.sleep(args.show_interval)
|
||||
|
||||
video.release()
|
||||
|
||||
if video_writer:
|
||||
video_writer.release()
|
||||
else:
|
||||
args.save_predictions = False
|
||||
raise ValueError(
|
||||
f'file {os.path.basename(args.input)} has invalid format.')
|
||||
|
||||
if args.save_predictions:
|
||||
with open(args.pred_save_path, 'w') as f:
|
||||
json.dump(
|
||||
dict(
|
||||
meta_info=pose_lifter.dataset_meta,
|
||||
instance_info=pred_instances_list),
|
||||
f,
|
||||
indent='\t')
|
||||
print(f'predictions have been saved at {args.pred_save_path}')
|
||||
|
||||
if save_output:
|
||||
input_type = input_type.replace('webcam', 'video')
|
||||
print_log(
|
||||
f'the output {input_type} has been saved at {output_file}',
|
||||
logger='current',
|
||||
level=logging.INFO)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
BIN
hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth
(Stored with Git LFS)
Normal file
BIN
hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth
(Stored with Git LFS)
Normal file
Binary file not shown.
300
humanPoseDetection.ipynb
Normal file
300
humanPoseDetection.ipynb
Normal file
File diff suppressed because one or more lines are too long
3
is_torch.py
Normal file
3
is_torch.py
Normal file
@ -0,0 +1,3 @@
|
||||
import torch
|
||||
|
||||
print(torch.cuda.is_available())
|
||||
BIN
rtmdet_m_8xb32-100e_coco-obj365-person-235e8209.pth
(Stored with Git LFS)
Normal file
BIN
rtmdet_m_8xb32-100e_coco-obj365-person-235e8209.pth
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
rtmpose-m_simcc-body7_pt-body7_420e-256x192-e48f03d0_20230504.pth
(Stored with Git LFS)
Normal file
BIN
rtmpose-m_simcc-body7_pt-body7_420e-256x192-e48f03d0_20230504.pth
(Stored with Git LFS)
Normal file
Binary file not shown.
353
test.py
Normal file
353
test.py
Normal file
@ -0,0 +1,353 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import logging
|
||||
import time
|
||||
|
||||
import cv2
|
||||
from argparse import ArgumentParser
|
||||
|
||||
from mmengine.logging import print_log
|
||||
from mmpose.apis import inference_topdown, init_model
|
||||
from mmpose.registry import VISUALIZERS
|
||||
from mmpose.structures import merge_data_samples
|
||||
import numpy as np
|
||||
|
||||
class Position:
|
||||
def __init__(self, person_kpts):
|
||||
if len(person_kpts) == 8:
|
||||
self.left_elbow_angle = person_kpts[0]
|
||||
self.right_elbow_angle = person_kpts[1]
|
||||
self.left_shoulder_angle = person_kpts[2]
|
||||
self.right_shoulder_angle = person_kpts[3]
|
||||
self.left_leg_angle = person_kpts[4]
|
||||
self.right_leg_angle = person_kpts[5]
|
||||
self.left_hip_angle = person_kpts[6]
|
||||
self.right_hip_angle = person_kpts[7]
|
||||
else:
|
||||
self.left_hip = person_kpts[11]
|
||||
self.left_knee = person_kpts[13]
|
||||
self.left_ankle = person_kpts[15]
|
||||
|
||||
self.right_hip = person_kpts[12]
|
||||
self.right_knee = person_kpts[14]
|
||||
self.right_ankle = person_kpts[16]
|
||||
|
||||
self.left_shoulder = person_kpts[5]
|
||||
self.left_elbow = person_kpts[7]
|
||||
self.left_wrist = person_kpts[9]
|
||||
|
||||
self.right_shoulder = person_kpts[6]
|
||||
self.right_elbow = person_kpts[8]
|
||||
self.right_wrist = person_kpts[10]
|
||||
|
||||
self.left_elbow_angle = angle_between(self.left_shoulder - self.left_elbow, self.left_wrist - self.left_elbow)
|
||||
self.right_elbow_angle = angle_between(self.right_shoulder - self.right_elbow, self.right_wrist - self.right_elbow)
|
||||
|
||||
self.left_shoulder_angle = angle_between(self.right_shoulder - self.left_shoulder, self.left_elbow - self.left_shoulder)
|
||||
self.right_shoulder_angle = angle_between(self.left_shoulder - self.right_shoulder, self.right_elbow - self.right_shoulder)
|
||||
|
||||
self.left_leg_angle = angle_between(self.left_hip - self.left_knee, self.left_ankle - self.left_knee)
|
||||
self.right_leg_angle = angle_between(self.right_hip - self.right_knee, self.right_ankle - self.right_knee)
|
||||
|
||||
self.left_hip_angle = angle_between(self.left_shoulder - self.left_hip, self.left_knee - self.left_hip)
|
||||
self.right_hip_angle = angle_between(self.right_shoulder - self.right_hip, self.right_knee - self.right_hip)
|
||||
|
||||
def to_array(self):
|
||||
return [
|
||||
self.left_elbow_angle,
|
||||
self.right_elbow_angle,
|
||||
self.left_shoulder_angle,
|
||||
self.right_shoulder_angle,
|
||||
self.left_leg_angle,
|
||||
self.right_leg_angle,
|
||||
self.left_hip_angle,
|
||||
self.right_hip_angle
|
||||
]
|
||||
|
||||
def distance_to(self, position):
|
||||
error = 0
|
||||
success = True
|
||||
|
||||
for i, x in enumerate(self.to_array()):
|
||||
if 3 < i < 6:
|
||||
continue
|
||||
|
||||
y = position.to_array()[i]
|
||||
|
||||
if abs(y) > 165:
|
||||
x = abs(x)
|
||||
y = abs(y)
|
||||
|
||||
dist = abs(y - x)
|
||||
|
||||
if dist > 20:
|
||||
success = False
|
||||
# print(f"{i} nie jest ok: moje: {x}, cel: {y}")
|
||||
error += abs(y - x)
|
||||
else:
|
||||
pass
|
||||
# print(f"{i} jest ok: moje: {x}, cel: {position.to_array()[i]}")
|
||||
|
||||
return (success, error)
|
||||
|
||||
def parse_args():
|
||||
parser = ArgumentParser()
|
||||
# parser.add_argument('checkpoint', help='Checkpoint file')
|
||||
parser.add_argument(
|
||||
'--device', default='cuda:0', help='Device used for inference')
|
||||
parser.add_argument(
|
||||
'--draw-heatmap',
|
||||
action='store_true',
|
||||
help='Visualize the predicted heatmap')
|
||||
parser.add_argument(
|
||||
'--show-kpt-idx',
|
||||
action='store_true',
|
||||
default=False,
|
||||
help='Whether to show the index of keypoints')
|
||||
parser.add_argument(
|
||||
'--skeleton-style',
|
||||
default='mmpose',
|
||||
type=str,
|
||||
choices=['mmpose', 'openpose'],
|
||||
help='Skeleton style selection')
|
||||
parser.add_argument(
|
||||
'--kpt-thr',
|
||||
type=float,
|
||||
default=0.3,
|
||||
help='Visualizing keypoint thresholds')
|
||||
parser.add_argument(
|
||||
'--radius',
|
||||
type=int,
|
||||
default=3,
|
||||
help='Keypoint radius for visualization')
|
||||
parser.add_argument(
|
||||
'--thickness',
|
||||
type=int,
|
||||
default=1,
|
||||
help='Link thickness for visualization')
|
||||
parser.add_argument(
|
||||
'--alpha', type=float, default=0.8, help='The transparency of bboxes')
|
||||
parser.add_argument(
|
||||
'--camera-id', type=int, default=0, help='Camera device ID')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def angle_between(v1, v2):
|
||||
"""
|
||||
Liczy kąt między wektorami v1 i v2 w stopniach.
|
||||
Znak kąta zależy od kierunku (przeciwnie do ruchu wskazówek zegara jest dodatni).
|
||||
"""
|
||||
# kąt w radianach
|
||||
angle = np.arccos(np.clip(np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)), -1.0, 1.0))
|
||||
|
||||
# obliczamy znak kąta w 2D: + jeśli v2 jest "po lewej" od v1
|
||||
sign = np.sign(v1[0] * v2[1] - v1[1] * v2[0])
|
||||
|
||||
return np.degrees(angle) * sign
|
||||
|
||||
def is_visible(kpt, threshold=0.3):
|
||||
# kpt = [x, y, score]
|
||||
return kpt[2] > threshold
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
# build the model from a config file and a checkpoint file
|
||||
if args.draw_heatmap:
|
||||
cfg_options = dict(model=dict(test_cfg=dict(output_heatmaps=True)))
|
||||
else:
|
||||
cfg_options = None
|
||||
|
||||
model = init_model(
|
||||
"mmpose/configs/body_2d_keypoint/topdown_heatmap/coco/td-hm_hrnet-w48_8xb32-210e_coco-256x192.py",
|
||||
"hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth",
|
||||
device=args.device,
|
||||
cfg_options=cfg_options)
|
||||
|
||||
# init visualizer
|
||||
model.cfg.visualizer.radius = args.radius
|
||||
model.cfg.visualizer.alpha = args.alpha
|
||||
model.cfg.visualizer.line_width = args.thickness
|
||||
|
||||
visualizer = VISUALIZERS.build(model.cfg.visualizer)
|
||||
visualizer.set_dataset_meta(
|
||||
model.dataset_meta, skeleton_style=args.skeleton_style)
|
||||
|
||||
# start capturing video from camera
|
||||
cap = cv2.VideoCapture(args.camera_id)
|
||||
if not cap.isOpened():
|
||||
print("Error: Cannot open camera")
|
||||
return
|
||||
|
||||
lastDegs = []
|
||||
lastMove = 0
|
||||
visible = 0
|
||||
maha = 0
|
||||
start = False
|
||||
|
||||
oldpos = None
|
||||
waiting = 100
|
||||
|
||||
positions = []
|
||||
numPositions = 0
|
||||
tPose = Position(
|
||||
[
|
||||
167.5568,
|
||||
-161.67027,
|
||||
-166.49443,
|
||||
168.22028,
|
||||
110.21745,
|
||||
166.41733,
|
||||
167.57822,
|
||||
-176.08066
|
||||
]
|
||||
)
|
||||
|
||||
krakowiak = Position(
|
||||
[np.float32(-98.226715), np.float32(106.39389), np.float32(-135.05656), np.float32(139.48904), np.float32(-149.9036), np.float32(8.216028), np.float32(174.70923), np.float32(-176.893)]
|
||||
)
|
||||
|
||||
krakowiakRight = Position(
|
||||
[np.float32(-110.61421), np.float32(-174.2424), np.float32(-127.05916), np.float32(174.9463),
|
||||
np.float32(175.62007), np.float32(166.89127), np.float32(168.8219), np.float32(-178.02744)]
|
||||
)
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
print("Error: Cannot read frame from camera")
|
||||
break
|
||||
|
||||
# convert BGR to RGB
|
||||
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
|
||||
# inference
|
||||
batch_results = inference_topdown(model, img)
|
||||
results = merge_data_samples(batch_results)
|
||||
|
||||
person_kpts = results.pred_instances.keypoints[0]
|
||||
person_visible = results.pred_instances.keypoints_visible[0]
|
||||
|
||||
left_hand_visible = person_visible[5] > 0.75 and person_visible[5] > 0.75 and person_visible[9] > 0.75
|
||||
right_hand_visible = person_visible[6] > 0.75 and person_visible[8] > 0.75 and person_visible[10] > 0.75
|
||||
|
||||
left_leg_visible = person_visible[11] > 0.75 and person_visible[13] > 0.75 and person_visible[15] > 0.75
|
||||
right_leg_visible = person_visible[12] > 0.75 and person_visible[14] > 0.75 and person_visible[16] > 0.75
|
||||
|
||||
position = Position(person_kpts)
|
||||
#
|
||||
if position.distance_to(tPose)[0]:
|
||||
print("\rT POSE!", end="")
|
||||
elif position.distance_to(krakowiak)[0]:
|
||||
print("\rKrakowiak", end="")
|
||||
elif position.distance_to(krakowiakRight)[0]:
|
||||
print("\rKrakowiak right", end="")
|
||||
else:
|
||||
print("\rNIC!", end="")
|
||||
|
||||
# print(position.left_elbow_angle)
|
||||
# if oldpos is None:
|
||||
# oldpos = position
|
||||
#
|
||||
# if oldpos.distance_to(position) < 7.5:
|
||||
# print(f"\r{goalPosition.distance_to(position)}", end="")
|
||||
#
|
||||
# oldpos = position
|
||||
|
||||
# if error > 200:
|
||||
|
||||
# if start:
|
||||
# if numPositions > 100:
|
||||
# avgPosition = [0, 0, 0, 0, 0, 0, 0, 0]
|
||||
#
|
||||
# for element in positions:
|
||||
# for i, data in enumerate(element):
|
||||
# avgPosition[i] += data
|
||||
#
|
||||
# for i, element in enumerate(avgPosition):
|
||||
# avgPosition[i] = avgPosition[i] / numPositions
|
||||
#
|
||||
# print(avgPosition)
|
||||
#
|
||||
# break
|
||||
# else:
|
||||
# print(f"\r{numPositions}", end="")
|
||||
# if oldpos is None:
|
||||
# oldpos = position
|
||||
#
|
||||
# if oldpos.distance_to(position)[0]:
|
||||
# positions.insert(0, position.to_array())
|
||||
# numPositions += 1
|
||||
#
|
||||
# oldpos = position
|
||||
#
|
||||
# # else:
|
||||
# # print(f"\rOK!", end="")
|
||||
#
|
||||
# if waiting != 0 and not start:
|
||||
# print(f"\r{waiting}", end="")
|
||||
# waiting -= 1
|
||||
# else:
|
||||
# start = True
|
||||
|
||||
# lastDegs.insert(0, (left_elbow_angle, right_elbow_angle))
|
||||
#
|
||||
# last = 0
|
||||
# lastCount = 0
|
||||
#
|
||||
# for element in lastDegs:
|
||||
# last += element[1]
|
||||
# lastCount += 1
|
||||
#
|
||||
# last = last / lastCount
|
||||
# dist = right_elbow_angle - last
|
||||
#
|
||||
# if not right_visible:
|
||||
# visible = 0
|
||||
# print("\rNie widać prawej ręki!!!!!!!!", end="")
|
||||
# else:
|
||||
# if maha == 0:
|
||||
# print("\rWidać rękę, nie maha!", end="")
|
||||
# else:
|
||||
# maha -= 1
|
||||
#
|
||||
# visible += 1
|
||||
#
|
||||
# if 15 < abs(dist) < 60 and visible > 5:
|
||||
# if lastMove != dist > 0:
|
||||
# maha = 10
|
||||
# print("\rmaha!", end="")
|
||||
#
|
||||
# lastMove = dist > 0
|
||||
#
|
||||
# if len(lastDegs) > 5:
|
||||
# lastDegs.pop()
|
||||
|
||||
# visualize
|
||||
vis_img = visualizer.add_datasample(
|
||||
'result',
|
||||
img,
|
||||
data_sample=results,
|
||||
draw_gt=False,
|
||||
draw_bbox=True,
|
||||
kpt_thr=args.kpt_thr,
|
||||
draw_heatmap=args.draw_heatmap,
|
||||
show_kpt_idx=args.show_kpt_idx,
|
||||
skeleton_style=args.skeleton_style,
|
||||
show=False,
|
||||
out_file=None)
|
||||
|
||||
# convert RGB back to BGR for OpenCV
|
||||
vis_img = cv2.cvtColor(vis_img, cv2.COLOR_RGB2BGR)
|
||||
cv2.imshow('Live Pose Estimation', vis_img)
|
||||
|
||||
# press 'q' to quit
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
BIN
videopose_h36m_243frames_fullconv_supervised_cpn_ft-88f5abbb_20210527.pth
(Stored with Git LFS)
Normal file
BIN
videopose_h36m_243frames_fullconv_supervised_cpn_ft-88f5abbb_20210527.pth
(Stored with Git LFS)
Normal file
Binary file not shown.
Reference in New Issue
Block a user